
Learning Geometric Hashing Functions

for Model-Based Object Recognition
George Bebis?, Michael Georgiopoulost, and Niels da Vitoria Lobo I

'Depart ent of Electrical h Computer Engineering, University of Central Florida, Orlando, FL 32816
?Department of Computer Science, University of Central Florida, Orlando, FL 32816

Abstract

A major problem associated with geometric hash-
ing and methods which have emerged fiom it is the
non-uniform distribution of invariants over the hash
space. This problem can affect the peqormance of the
method significantly. Finding a "good" geometric hash
function which redhributes the invariants uniformly
over the hush space is not easy. In this paper, a new
approach is proposed for alleviating the above problem.
It is based on the use of an "elastic hash table" which is
implemented as a Self-Organizing Feature Map Neural
Network (SOFM-NN). In contrast to existing approaches
which try to redistribute the invariants over the hash
bins, we proceed oppositely, spreading the hash bins
over the invariants. During training, the SOFM-NN
resembles an elastic net which deformes over the hush
space. The objective of the deformation process is to
spread more hush bins in hash space areas which are
heavily occupied and less hash bins in lower density
areas. The advantage of the proposed approach is that it
is a process that adapts to the invariants through learn-
ing. Hence, it makes absolutely no assumptions about
the statistical characteristics of the invariants and the
geometric hash function is actually computed through
learning. Furthermore, the well known "topology
preserving" property of the SOFM-NN guarantees that
the computed geometric hash function should be well
behaved. Finally, the proposed approach is inherently
parallelizable.

1. Introduction

Indexing-based approaches for model-based object
recognition have received a lot of attention in the last
few years. The basic idea is to speedup searching by
sacrificing space. Initially, features which remain
unchanged under certain geometric transformations
(invariants) are extracted from each model. Then, a
model database is built by establishing proper associa-

tions between features and models. During recognition,
scene features are used to retrieve the most feasible
associations stored in the model database. Efficient
indexing schemes are used for both organizing and
searching the model database.

Geometric hashing [l] is a well known indexing-
based object recognition technique. Like similar
indexing-based object recognition approaches, geometric
hashing suffers from a major problem: the non-uniform
distribution of invariants over the hash space. This can
result in an inefficient storage of the data entries over
the hash table which can slow down the recognition
time of the algorithm significantly. Also, taking into
consideration that geometric hashing is highly amenable
to parallel implementation, a uniform distribution of
data is highly desirable for efficiently solving the load-
balancing problem. The key solution to the problem is
the selection of a "good" geometric hash function which
should be able to uniformly redistribute the data over
the hash table.

Costa, Haralick, and Shapiro [2] have tried a
number of different hash functions in order to choose
the one which performs best. However, the selection of
a good hash function seems to be problem dependent.
Rehashing has been suggested by Rigoutsos and Hum-
me1 [3],[4]. The basic idea behind this approach is to
find a transformation (rehashing) which maps the distri-
bution of invariants to a uniform distribution, using con-
cepts from probability theory. This approach suffers
from two drawbacks. First, it is based on the assumption
that the pdf of model point features is known apriori.
However, such an assumption can be very unreliable,
especially in cases where the number of model objects
is not large. Second, the derivation of the rehashing
transformation involves complex computations and, in
certain cases, is even intractable [SI.

In this paper, a new approach for dealing with the
problem of the non-uniformity of invariants is presented.
This approach, based on the use of an elastic hash
table, makes no assumption about the pdf of the model
point features and is notable for its simplicity. More-

0-8186-7042-8/95 $4.00 0 1995 IEEE
543

over, it does not require the estimation of the pdf of
invariants and it is applicable even in cases where a
closed-form analytical expression for the pdf of invari-
ants cannot be derived. The "elastic hash table" is
implemented as a Self Organizing Feature Map Neural
Network (SOFM-NN) [6], trained with a variation of the
Kohonen algorithm that we have developed, motivated
by the conscientious competitive learning algorithm [7].

The organization of the paper is as follows: Sec-
tion 2 reviews the geometric hashing technique and the
fundamental ideas of rehashing. Section 3 outlines our
approach. Problems associated with the Kohonen leam-
ing algorithm and the Kohonen algorithm with consci-
ence are presented in Section 4. Experimental results
and comparisons are given in Section 5. Finally, Section
6 presents our conclusions.

2. Geometric hashing and rehashing

Geometric hashing consists of two phases: a
preprocessing phase which is performed off-line and a
recognition phase. During the preprocessing phase, the
models are represented in an affine invariant way. For
each ordered non-collinear triplet of model points
(basis-triplet), a coordinate system is defined and the
coordinates of all the other model points are recomputed
in terms of this coordinate system. The recomputed
coordinates (invariants) are used then as an index into a
hash table where the entry (basis-triplet, model) is
recorded.

During the recognition phase, an arbitrary ordered
triplet of non-collinear points is chosen from the scene.
Then, the coordinates of the remaining scene points are
recomputed in terms of the coordinate frame defined by
this triplet. The recomputed coordinates of each point
are used as an index into the hash table and for each
entry (basis-triplet, model) recorded there, a vote is cast.
If a certain entry (basis-triplet, model) scores a large
number of votes, then it is concluded that this triplet
corresponds to the one chosen from the scene. The
unique transformation which maps the model triplet to
the scene triplet is assumed to be the transformation
between the model and the scene.

Geometric hashing employs a very simple hash
function which consists of a linear scaling of the invari-
ants followed by some kind of quantization in order to
yield an integer index which fits the dimensions of the
hash table. In this case, hashing merely implies a
quantization of the space of invariants. In order for the
distribution of entries over the hash table to be uniform,
hashing should be able to divide the space of invariants
into equiprobable regions. In general, the invariants are

heavily non-uniformly distributed over the hash space.
To illustrate this, we have considered a small database
of objects (see Figure 2a). Applying the preprocessing
step yields the distribution of invariants shown in Figure
2c. The non-uniformity of invariants has as a result the
non-uniform storage of the data entries over the hash
table.

Rehashing has been proposed by Rigoutsos and
Hummel [3],[4] for dealing with the non-uniformity of
invariants. Specifically, rehashing is a transformation
which maps the distribution of invariants into a uniform
distribution. This is accomplished by first computing the
expected pdf of the distribution of invariants, assuming
that the model point features are generated by a known
random process (Gaussian with zero mean or uniform
over a convex domain). Three classes of model object
transformations were considered: rigid, similarity, and
affine. However, analytical rehashing transformations
were not derived in every case because of the intracta-
bility of the computations involved [5]. In the cases
where analytical formulas were derived, the pdf of
invariants was shown to resemble a Gaussian with zero
mean.

To show the effectiveness of the rehashing
transformation, we have considered the invariants shown
in Figure 2c. As can be observed, the distribution of
invariants does resemble a Gaussian with zero mean.
Applying the rehashing transformation (assuming simi-
larity transformations), yields the redistributed invariants
shown in Figure 2e. However, the distribution of invari-
ants can be very different from a Gaussian as is illus-
trated in section 5. Rehashing does not perform satis-
factorily in these cases.

3. Alleviating the non-uniformity of invari-
ants using the SOFM-NN

In this paper, a new approach for dealing with the
non-uniformity of invariants is proposed. The key idea
is to visualize the hash table as an elastic, two-
dimensional, lattice with the hash bins distributed over
the nodes of the lattice. Initially, the lattice can have
any structure. Our goal is to find a procedure capable of
distributing the hash bins according to the density of
invariants, assigning more hash bins in the vicinity of a
large number of invariants and less hash bins in the
vicinity of a small number of invariants. Thus, the pur-
pose is to distribute the hash bins over the invariants
instead of distributing the invariants over the hash bins.

The key idea is to represent the elastic hash table
as a SOFM-NN. The SOFh4-NN consists of an input
layer and a single output layer of nodes which usually

544

form a two-dimensional array. Each input is fully con-
nected to each output node and a weight is associated
with every connection. It is the output layer of nodes
that will play the role of the elastic hash table with each
output node corresponding to a different hash bin. At
the beginning of the training process, the weights associ-
ated with each node are chosen randomly over the space
of invariants. This action can be seen as spreading the
hash bins randomly over the invariants. During training,
the network is exposed to sample invariants and the dis-
tances between them and the weights associated with the
nodes of the SOFM-NN are computed. The node whose
weights are closest to the input invariants is declared as
the winner (compfitive learning). Then, the weights
associated with the winner node and nodes within a
neigborhood of it change in a way such that they divide
the space of invariants into a number of groups. Eventu-
ally, each group will access a specific node @ash bin).

The behavior of the SOFM-NN during training
resembles an elastic net which deforms through learning
trying to closely resemble the input data. Actually, the
role of the training procedure is to distribute the weight
vectors in the input space in such a way that they
approximate the pdf of the inputs. Kohonen [6] has
argued that the density of the weight vectors which have
been assigned to an input region, approximates the den-
sity of the inputs occupying this region. In other words,
the final structure of the weights, should reflect the sta-
tistical characteristics of the invariants (non-parametric
model).

After training has been completed, the SOFM-NN
has learned to implement a non-linear mapping from the
input space to the "node" space (hash bins). The node to
be accessed when random invariants are presented to the
SOFM-NN, will be determined again through competi-
tion. A very useful property of the Kohonen algorithm is
that weight vectors tend to be ordered according to their
mutual similarity (toplogy preserving property). This
property is a direct consequence of the use of topologi-
cal neighborhoods during training. The importance of
this property is that after learning has been completed,
nearby nodes respond to similar inputs. Thus, the map-
ping from the input space to the node space will be well
behaved.

The above properties are very important in the
implementation of our approach. The first property
implies that the space of invariants should be partioned
into a number of equiprobable regions. As a result, each
hash bin should be assigned an even number of entries.
The second property implies that partial voting (a
heuristic whose use has been shown to be almost
imperative [3],[8]), can be efficiently implemented since
the mapping from the space of invariants to the space of
"nodes" will be proximity preserving.

We have considered some examples in order to
demonstrate our approach. First, we have randomly
chosen a number of two dimensional points from a uni-
form rectangular distribution (Figure la), and a 10 x 10
SOFM-NN. Figure l b shows the initial Structure of the
SOFM while Figure IC shows an intermediate step. The
final structure of SOFM is shown in Figure Id. If the
distribution of invariants was non-uniform, then the
region where the weight vectors are more crowded
would also be the region where the invariants fall more
densely. This is demonstrated in Figure If where a 10 x
10 SOFM-NN has been trained again using a set of
two-dimensional points drawn from a Gaussian distribu-
tion (Figure le).

I I c .. " Y " .. " Y

Y

Y

"

. U " " I .. " Y " Y 1

. l I
" " . . U " U " " * .I "(y .. " ., 3 (3

Figure 1. (a) 2,000 uniformly distributed points, (b) the
initial structure of the SOFM, (c) the structure of the
SOFM after 100 iterations, (d) the final structure the
SOFM, (e) 2,000 gaussian distributed points, (f) the final
structure of the SOFM.

4. Adding conscience to the Kohonen learn-
ing algorithm

Competitive learning algorithms often lead to
solutions where several network nodes remain underutil-
ized or completely unutilized. This can deteriorate the
performance of the method significantly since specific
nodes will be winning the competitions consistently. The
Kohonen learning algorithm attempts to overcome these
problems by using topological neighborhoods [6] .
Although this approach is quite effective, it does not

545

alleviate all the problems completely. There are other
approaches in the literature which try to attack these
problems. Three of them which seem to be quite
promising were considered in this study (the convex
combination method [lo], the competitive learning with
conscience [7] and the competitive learning with atten-
tion [U]).

Experimental results demonstrate that the competi-
tive learning with conscience approach is superior to the
other two [9]. However, none of these approaches
demonstrated the topology preserving property. This is a
direct consequence of the fact that the above algorithms
change the weights of the winning node only. Since the
topology preserving property is very critical in the com-
putation of a well behaved geometric hash function, we
combined the Kohonen learning algorithm, which
preserves the topology, with each one of the above
heuristics, which improve node utilization. Our objective
was to strengthen the performance of the Kohonen algo-
rithm in terms of node utilization, while preserving the
topology at the same time. The results obtained indi-
cated that all the variations preserved the topology
(slight distortions were observed), however, the
Kohonen algorithm with conscience gave the best results
in terms of node utilization [9].

1 1-1. ._

. . . ! : : : ! . . . ! - * * a . - - - -

Figure 2. (a) The set of numbers, (b) the set of knives,
(c) the invariants for the set of numbers, (d) the invari-
ants for the set of knives, (e) the rehashed invariants for
the set of numbeis, (f) the rehashed invariants for the set
of knives.

5. Simulations and experimental results

This section presents a number of experimental
results and comparisons which demonstrate the
effectiveness of the proposed approach. The implemen-
tation details of the SOFMC-NN can be found in [9].

5.1. Experiment 1
The set of objects used in the first experiment is

shown in Figure 2b. Similarity transformations have
been considered in this experiment. The distribution of
invariants related to this data set is shown in Figure 2d.
Applying the rehashing transformation derived for the
case of similarity transformations, results in the non-
uniform distribution shown in Figure 2f. The reason that
rehashing has failed to perform well in this case, is that
the computed distribution of invariants does not resem-
ble a Gaussian. Figures 3a and 3c shows the distribu-
tion of hash entries over a 20 x 20 hash table for the
case of the original invariants and the rehashed invari-
ants correspondingly. Obviously, rehashing does not per-
form satisfactorily.

"I I

(e) 0
Figure 3. (a), (c) and (e) the distribution of hash
entries under similarity transformations using the origi-
nal approach, rehashing, and the SOFMC-NN
correspondingly; (b), (d) and (0 the distribution of hash
entries under affine transformations.

To demonstrate our approach, we have chosen a
SOFMC-NN with two inputs and 400 output nodes,
arranged on a 20 x 20 grid. The network was trained
using the Kohonen learning algorithm with conscience
for 500 epochs. The number of invariants used during
training was 31,572 and these were normalized in the

546

interval [0, 11 x [0, 11. The feature map to which the
network converged is shown in Figure 4a. Figure 3e
illustrates the distribution of entries over the elastic hash
table, which was computed by voting using all the train-
ing patterns. To show the amount of hash table utiliza-
tion, we have computed the standard deviation (SD) of
the number of entries that each hash bin stores. The first
row of Table (1) shows the results.

'Similarity transf. i 62.31 i 35.33 13.40
Affme transf. I 194.20 I 86.06 25.38

TABLE 1. Standard deviation of the number of hash entries.

Standard deviation
I Orieinal I Rehashed I SOFMC-NN

Figure 4. (a) the structure of the SOFMC for the case
of similarity transformations, (b) the structure of the
SOFMC for the case of affine transformations.

5.2. Experiment 2
This experiment deals with affine transformations,

The database of the real objects used is shown in Figure
5. Invariants based on unstable basis triplets have been
rejected using the area based criterion given in [8]. It
should be mentioned that this approach for rejecting
unstable triplets is very heuristic and it may reject basis
triplets which are not truly unstable. However, we have
used it in our experimentation because of its simplicity
and because it does not affect the ideas demonstrated
here.

3:

Figure 5. The set of model objects

Figure 6a shows the computed invariants. Observ-
ing the distribution of invariants in Figure 6a more care-
fully, we can see that the third quadrant is less crowded
than the other quadrants. This seems to be in agreement

with the qualitative results obtained in the case of affine
transformations and under the assumption that the distri-
bution of model points is uniform over a convex domain
[4],[5]. However, no rehashing transformation was
derived under this assumption because of the intractabil-
ity of the computations involved. The rehashing
transformation we used here is the only one derived in
the case of affine transformations and it is based on the
assumption that the distribution of model features is
Gaussian over a convex domain. Obviously, the rehash-
ing transformation does not perform satisfactorily, as is
illustrated in Figure 6b.
. .

Figure 6. (a) The distribution of (affine) invariants for
the set of different objects, (b) the rehashed distribution
of invariants.

Figures 3b and 3d show the distribution of hash
entries over a 20 x 20 hash table, for the case of the ori-
ginal invariants and the rehashed invariants correspond-
ingly. A SOFMC-NN with the same architecture as in
the previous experiment was utilized. The same network
parameters were chosen as before except for the number
of epochs which was chosen to be 100. The number of
invariants used to train the SOFh4C-NN was 41,292,
normalized in the interval [0, 11 x [0, 11. The feature
map to which the network converged is shown in Figure
4b. Figun 3f illustrates the distribution of hash entries
over the elastic hash table and the second row of Table
(1) shows the computed SD's (hash table occupancy) for
all the approaches.

53. Experiment 3
In this section, we report two recognition experi-

ments. In the first experiment, the scene shown in Figure
7a was considered. The recognition results are shown in
Figure 7e. The first two rows of Table (2) present the
number of hypotheses tried by each approach until both
models were recognized correctly (60% or more of the
model points were required to match with the scene). In
the hypothesis verification step, a candidate match was
verified if the corresponding scene basis triplet had
received at least one fourth of the maximum number of
votes. Next, we considered the scene of Figure 7b. The
recognition results are shown in Figure 7f and the
number of hypotheses tried by each method is shown in
the last three rows of Table (2). Overall, the proposed

547

approach verified about 35% - 50% less hypotheses than
the hypotheses verified by geometric hashing without
rehashing and 20% - 30% less hypotheses than the
hypotheses verified by geometric hashing with rehash-
ing.

TABLE 2. Number of hypotheses tried during verification.

Number of hypotheses

69835

204997
144546

Scene2(Model3) I 34295 I 26947 I 19784

(4
Figure 7. (a) and (b) two real scenes with overlapped
models, (c)' and (d) 'the boundary contours with the
interest points (curvature maxima and zero-crossings)
marked, (e) and (f) the recognition results.

6. Conclusions

The advantages of the proposed approach are very
important, given that the choice of a good hash function
is problem dependent. The availability of a learning
scheme which can find a geometric hash function with
stable behavior, that is independent of the problem at
hand, is particularly attractive. Furthermore, the
independence of the proposed approach from any
assumption suggests that the proposed approach is a

very useful tool in helping us to derive approximate
analytical rehashing functions in cases where a closed
form solution cannot be found using traditional
approaches. Also, extending the SOFMC-NN to handle
3-D hash spaces is quite possible. One problem associ-
ated with the proposed approach is that the training of
the SOFMC-NN is rather time consuming. However,
this is not a serious disadvantage since the SOFMC-NN
can be parallelized.

Acknowledgements

The first author is particularly obliged to Dr. Isidore
Rigoutsos for his valuable comments and help. This
work was suppotted by a grant from the FSGC (Florida
Space Grant Consortium) and TRDA (Technological
Research and Development Authority).

References

[l] Y. Lamdan, J. Schwartz and H. Wolfson, "Affine invariant
model-based object recognition", IEEE Trans. on Robot-
ics and Automation, vol. 6, no. 5, pp. 578-589, October
1990.

[2] M. Costa, R. Haralick, and L. Shapiro, "Optimal affine
matching", In Proceedings of the 6th Israeli Conference
on Artificial Intelligence and Computer Vision,
December 1989.

[3] I. Rigoutsos and R. Hummel, "Robust similarity invariant
matching in the presence of noise", In Proceedings of
the 8th Israeli Conference on Artificial Intelligence and
Computer Vision, December 1991.

[4] I. Rigoutsas and R. Hummel, "Implementation of
geometric hashing on the connection machine", In
Workshop on Directions in Automated Cad-based
Vision, pp. 76-84, June 1991.

[5] 1. Rigoutsos, Massively parallel bayesian object recogni-
tion, Ph.D. thesis, Computer Science Department and
Courant Institute of Mathematical Sciences, New York
University, August 1992.

[6] T. Kohonen, Self-organization and associative memory,
Springer-Verlag, 3rd edition, 1989.

[7] D. DeSieno, "Adding a conscience to competitive leam-
ing", IEEE International Conference on Neural Net-
works, vol. I, pp. 117-124, 1988.

[8] M. Costa, R. Haralick. T. Phillips, and L. Shapim,
"Optimal affine-invariant point matching", SPIE Vol.
1095 Applications of Artificial Intelligence, VI1 (1989),

[9] G. =is, M. Georgiopoulos and N. da Vitoria Lobo,
"Increasing the efficiency of geometric hashing using
self-organizing maps with conscience", submitted for
publication.

[lo] R. Hecht-Nielsen, "Counterpropagation networks",
Applied Optics, vol. 26, pp. 4979-49841987.

[ll] G. Huerter, "Solution of the traveling salesman problem
with an adaptive ring", IEEE International Conference
on Neural Networks, vol. I, pp. 85-92, 1988.

pp. 515-530.

