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Abstract 

A major problem associated with geometric hash- 
ing and methods which have emerged fiom it is the 
non-uniform distribution of invariants over the hash 
space. This problem can affect the peqormance of the 
method significantly. Finding a "good" geometric hash 
function which redhributes the invariants uniformly 
over the hush space is not easy. In this paper, a new 
approach is proposed for alleviating the above problem. 
It is based on the use of an "elastic hash table" which is 
implemented as a Self-Organizing Feature Map Neural 
Network (SOFM-NN). In contrast to existing approaches 
which try to redistribute the invariants over the hash 
bins, we proceed oppositely, spreading the hash bins 
over the invariants. During training, the SOFM-NN 
resembles an elastic net which deformes over the hush 
space. The objective of the deformation process is to 
spread more hush bins in hash space areas which are 
heavily occupied and less hash bins in lower density 
areas. The advantage of the proposed approach is that it 
is a process that adapts to the invariants through learn- 
ing. Hence, it makes absolutely no assumptions about 
the statistical characteristics of the invariants and the 
geometric hash function is actually computed through 
learning. Furthermore, the well known "topology 
preserving" property of the SOFM-NN guarantees that 
the computed geometric hash function should be well 
behaved. Finally, the proposed approach is inherently 
parallelizable. 

1. Introduction 

Indexing-based approaches for model-based object 
recognition have received a lot of attention in the last 
few years. The basic idea is to speedup searching by 
sacrificing space. Initially, features which remain 
unchanged under certain geometric transformations 
(invariants) are extracted from each model. Then, a 
model database is built by establishing proper associa- 

tions between features and models. During recognition, 
scene features are used to retrieve the most feasible 
associations stored in the model database. Efficient 
indexing schemes are used for both organizing and 
searching the model database. 

Geometric hashing [l] is a well known indexing- 
based object recognition technique. Like similar 
indexing-based object recognition approaches, geometric 
hashing suffers from a major problem: the non-uniform 
distribution of invariants over the hash space. This can 
result in an inefficient storage of the data entries over 
the hash table which can slow down the recognition 
time of the algorithm significantly. Also, taking into 
consideration that geometric hashing is highly amenable 
to parallel implementation, a uniform distribution of 
data is highly desirable for efficiently solving the load- 
balancing problem. The key solution to the problem is 
the selection of a "good" geometric hash function which 
should be able to uniformly redistribute the data over 
the hash table. 

Costa, Haralick, and Shapiro [2] have tried a 
number of different hash functions in order to choose 
the one which performs best. However, the selection of 
a good hash function seems to be problem dependent. 
Rehashing has been suggested by Rigoutsos and Hum- 
me1 [3],[4]. The basic idea behind this approach is to 
find a transformation (rehashing) which maps the distri- 
bution of invariants to a uniform distribution, using con- 
cepts from probability theory. This approach suffers 
from two drawbacks. First, it is based on the assumption 
that the pdf of model point features is known apriori. 
However, such an assumption can be very unreliable, 
especially in cases where the number of model objects 
is not large. Second, the derivation of the rehashing 
transformation involves complex computations and, in 
certain cases, is even intractable [SI. 

In this paper, a new approach for dealing with the 
problem of the non-uniformity of invariants is presented. 
This approach, based on the use of an elastic hash 
table, makes no assumption about the pdf of the model 
point features and is notable for its simplicity. More- 
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over, it does not require the estimation of the pdf of 
invariants and it is applicable even in cases where a 
closed-form analytical expression for the pdf of invari- 
ants cannot be derived. The "elastic hash table" is 
implemented as a Self Organizing Feature Map Neural 
Network (SOFM-NN) [6], trained with a variation of the 
Kohonen algorithm that we have developed, motivated 
by the conscientious competitive learning algorithm [7]. 

The organization of the paper is as follows: Sec- 
tion 2 reviews the geometric hashing technique and the 
fundamental ideas of rehashing. Section 3 outlines our 
approach. Problems associated with the Kohonen leam- 
ing algorithm and the Kohonen algorithm with consci- 
ence are presented in Section 4. Experimental results 
and comparisons are given in Section 5. Finally, Section 
6 presents our conclusions. 

2. Geometric hashing and rehashing 

Geometric hashing consists of two phases: a 
preprocessing phase which is performed off-line and a 
recognition phase. During the preprocessing phase, the 
models are represented in an affine invariant way. For 
each ordered non-collinear triplet of model points 
(basis-triplet), a coordinate system is defined and the 
coordinates of all the other model points are recomputed 
in terms of this coordinate system. The recomputed 
coordinates (invariants) are used then as an index into a 
hash table where the entry (basis-triplet, model) is 
recorded. 

During the recognition phase, an arbitrary ordered 
triplet of non-collinear points is chosen from the scene. 
Then, the coordinates of the remaining scene points are 
recomputed in terms of the coordinate frame defined by 
this triplet. The recomputed coordinates of each point 
are used as an index into the hash table and for each 
entry (basis-triplet, model) recorded there, a vote is cast. 
If a certain entry (basis-triplet, model) scores a large 
number of votes, then it is concluded that this triplet 
corresponds to the one chosen from the scene. The 
unique transformation which maps the model triplet to 
the scene triplet is assumed to be the transformation 
between the model and the scene. 

Geometric hashing employs a very simple hash 
function which consists of a linear scaling of the invari- 
ants followed by some kind of quantization in order to 
yield an integer index which fits the dimensions of the 
hash table. In this case, hashing merely implies a 
quantization of the space of invariants. In order for the 
distribution of entries over the hash table to be uniform, 
hashing should be able to divide the space of invariants 
into equiprobable regions. In general, the invariants are 

heavily non-uniformly distributed over the hash space. 
To illustrate this, we have considered a small database 
of objects (see Figure 2a). Applying the preprocessing 
step yields the distribution of invariants shown in Figure 
2c. The non-uniformity of invariants has as a result the 
non-uniform storage of the data entries over the hash 
table. 

Rehashing has been proposed by Rigoutsos and 
Hummel [3],[4] for dealing with the non-uniformity of 
invariants. Specifically, rehashing is a transformation 
which maps the distribution of invariants into a uniform 
distribution. This is accomplished by first computing the 
expected pdf of the distribution of invariants, assuming 
that the model point features are generated by a known 
random process (Gaussian with zero mean or uniform 
over a convex domain). Three classes of model object 
transformations were considered: rigid, similarity, and 
affine. However, analytical rehashing transformations 
were not derived in every case because of the intracta- 
bility of the computations involved [5]. In the cases 
where analytical formulas were derived, the pdf of 
invariants was shown to resemble a Gaussian with zero 
mean. 

To show the effectiveness of the rehashing 
transformation, we have considered the invariants shown 
in Figure 2c. As can be observed, the distribution of 
invariants does resemble a Gaussian with zero mean. 
Applying the rehashing transformation (assuming simi- 
larity transformations), yields the redistributed invariants 
shown in Figure 2e. However, the distribution of invari- 
ants can be very different from a Gaussian as is illus- 
trated in section 5. Rehashing does not perform satis- 
factorily in these cases. 

3. Alleviating the non-uniformity of invari- 
ants using the SOFM-NN 

In this paper, a new approach for dealing with the 
non-uniformity of invariants is proposed. The key idea 
is to visualize the hash table as an elastic, two- 
dimensional, lattice with the hash bins distributed over 
the nodes of the lattice. Initially, the lattice can have 
any structure. Our goal is to find a procedure capable of 
distributing the hash bins according to the density of 
invariants, assigning more hash bins in the vicinity of a 
large number of invariants and less hash bins in the 
vicinity of a small number of invariants. Thus, the pur- 
pose is to distribute the hash bins over the invariants 
instead of distributing the invariants over the hash bins. 

The key idea is to represent the elastic hash table 
as a SOFM-NN. The SOFh4-NN consists of an input 
layer and a single output layer of nodes which usually 
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form a two-dimensional array. Each input is fully con- 
nected to each output node and a weight is associated 
with every connection. It is the output layer of nodes 
that will play the role of the elastic hash table with each 
output node corresponding to a different hash bin. At 
the beginning of the training process, the weights associ- 
ated with each node are chosen randomly over the space 
of invariants. This action can be seen as spreading the 
hash bins randomly over the invariants. During training, 
the network is exposed to sample invariants and the dis- 
tances between them and the weights associated with the 
nodes of the SOFM-NN are computed. The node whose 
weights are closest to the input invariants is declared as 
the winner (compfitive learning). Then, the weights 
associated with the winner node and nodes within a 
neigborhood of it change in a way such that they divide 
the space of invariants into a number of groups. Eventu- 
ally, each group will access a specific node @ash bin). 

The behavior of the SOFM-NN during training 
resembles an elastic net which deforms through learning 
trying to closely resemble the input data. Actually, the 
role of the training procedure is to distribute the weight 
vectors in the input space in such a way that they 
approximate the pdf of the inputs. Kohonen [6] has 
argued that the density of the weight vectors which have 
been assigned to an input region, approximates the den- 
sity of the inputs occupying this region. In other words, 
the final structure of the weights, should reflect the sta- 
tistical characteristics of the invariants (non-parametric 
model). 

After training has been completed, the SOFM-NN 
has learned to implement a non-linear mapping from the 
input space to the "node" space (hash bins). The node to 
be accessed when random invariants are presented to the 
SOFM-NN, will be determined again through competi- 
tion. A very useful property of the Kohonen algorithm is 
that weight vectors tend to be ordered according to their 
mutual similarity (toplogy preserving property). This 
property is a direct consequence of the use of topologi- 
cal neighborhoods during training. The importance of 
this property is that after learning has been completed, 
nearby nodes respond to similar inputs. Thus, the map- 
ping from the input space to the node space will be well 
behaved. 

The above properties are very important in the 
implementation of our approach. The first property 
implies that the space of invariants should be partioned 
into a number of equiprobable regions. As a result, each 
hash bin should be assigned an even number of entries. 
The second property implies that partial voting (a 
heuristic whose use has been shown to be almost 
imperative [3],[8]), can be efficiently implemented since 
the mapping from the space of invariants to the space of 
"nodes" will be proximity preserving. 

We have considered some examples in order to 
demonstrate our approach. First, we have randomly 
chosen a number of two dimensional points from a uni- 
form rectangular distribution (Figure la), and a 10 x 10 
SOFM-NN. Figure l b  shows the initial Structure of the 
SOFM while Figure IC shows an intermediate step. The 
final structure of SOFM is shown in Figure Id. If the 
distribution of invariants was non-uniform, then the 
region where the weight vectors are more crowded 
would also be the region where the invariants fall more 
densely. This is demonstrated in Figure If where a 10 x 
10 SOFM-NN has been trained again using a set of 
two-dimensional points drawn from a Gaussian distribu- 
tion (Figure le). 
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Figure 1. (a) 2,000 uniformly distributed points, (b) the 
initial structure of the SOFM, (c) the structure of the 
SOFM after 100 iterations, (d) the final structure the 
SOFM, (e) 2,000 gaussian distributed points, (f) the final 
structure of the SOFM. 

4. Adding conscience to the Kohonen learn- 
ing algorithm 

Competitive learning algorithms often lead to 
solutions where several network nodes remain underutil- 
ized or completely unutilized. This can deteriorate the 
performance of the method significantly since specific 
nodes will be winning the competitions consistently. The 
Kohonen learning algorithm attempts to overcome these 
problems by using topological neighborhoods [6] .  
Although this approach is quite effective, it does not 
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alleviate all the problems completely. There are other 
approaches in the literature which try to attack these 
problems. Three of them which seem to be quite 
promising were considered in this study (the convex 
combination method [lo], the competitive learning with 
conscience [7] and the competitive learning with atten- 
tion [U]). 

Experimental results demonstrate that the competi- 
tive learning with conscience approach is superior to the 
other two [9]. However, none of these approaches 
demonstrated the topology preserving property. This is a 
direct consequence of the fact that the above algorithms 
change the weights of the winning node only. Since the 
topology preserving property is very critical in the com- 
putation of a well behaved geometric hash function, we 
combined the Kohonen learning algorithm, which 
preserves the topology, with each one of the above 
heuristics, which improve node utilization. Our objective 
was to strengthen the performance of the Kohonen algo- 
rithm in terms of node utilization, while preserving the 
topology at the same time. The results obtained indi- 
cated that all the variations preserved the topology 
(slight distortions were observed), however, the 
Kohonen algorithm with conscience gave the best results 
in terms of node utilization [9]. 

1 1-1. ._ 
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Figure 2. (a) The set of numbers, (b) the set of knives, 
(c) the invariants for the set of numbers, (d) the invari- 
ants for the set of knives, (e) the rehashed invariants for 
the set of numbeis, ( f )  the rehashed invariants for the set 
of knives. 

5. Simulations and experimental results 

This section presents a number of experimental 
results and comparisons which demonstrate the 
effectiveness of the proposed approach. The implemen- 
tation details of the SOFMC-NN can be found in [9]. 

5.1. Experiment 1 
The set of objects used in the first experiment is 

shown in Figure 2b. Similarity transformations have 
been considered in this experiment. The distribution of 
invariants related to this data set is shown in Figure 2d. 
Applying the rehashing transformation derived for the 
case of similarity transformations, results in the non- 
uniform distribution shown in Figure 2f. The reason that 
rehashing has failed to perform well in this case, is that 
the computed distribution of invariants does not resem- 
ble a Gaussian. Figures 3a and 3c shows the distribu- 
tion of hash entries over a 20 x 20 hash table for the 
case of the original invariants and the rehashed invari- 
ants correspondingly. Obviously, rehashing does not per- 
form satisfactorily. 

"I I 

(e) 0 
Figure 3. (a), (c) and (e) the distribution of hash 
entries under similarity transformations using the origi- 
nal approach, rehashing, and the SOFMC-NN 
correspondingly; (b), (d) and (0 the distribution of hash 
entries under affine transformations. 

To demonstrate our approach, we have chosen a 
SOFMC-NN with two inputs and 400 output nodes, 
arranged on a 20 x 20 grid. The network was trained 
using the Kohonen learning algorithm with conscience 
for 500 epochs. The number of invariants used during 
training was 31,572 and these were normalized in the 
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interval [0, 11 x [0, 11. The feature map to which the 
network converged is shown in Figure 4a. Figure 3e 
illustrates the distribution of entries over the elastic hash 
table, which was computed by voting using all the train- 
ing patterns. To show the amount of hash table utiliza- 
tion, we have computed the standard deviation (SD) of 
the number of entries that each hash bin stores. The first 
row of Table (1) shows the results. 

'Similarity transf. i 62.31 i 35.33 13.40 
Affme transf. I 194.20 I 86.06 25.38 

TABLE 1. Standard deviation of the number of hash entries. 

Standard deviation 
I Orieinal I Rehashed I SOFMC-NN 

Figure 4. (a) the structure of the SOFMC for the case 
of similarity transformations, (b) the structure of the 
SOFMC for the case of affine transformations. 

5.2. Experiment 2 
This experiment deals with affine transformations, 

The database of the real objects used is shown in Figure 
5. Invariants based on unstable basis triplets have been 
rejected using the area based criterion given in [8]. It 
should be mentioned that this approach for rejecting 
unstable triplets is very heuristic and it may reject basis 
triplets which are not truly unstable. However, we have 
used it in our experimentation because of its simplicity 
and because it does not affect the ideas demonstrated 
here. 

3: 

Figure 5. The set of model objects 

Figure 6a shows the computed invariants. Observ- 
ing the distribution of invariants in Figure 6a more care- 
fully, we can see that the third quadrant is less crowded 
than the other quadrants. This seems to be in agreement 

with the qualitative results obtained in the case of affine 
transformations and under the assumption that the distri- 
bution of model points is uniform over a convex domain 
[4],[5]. However, no rehashing transformation was 
derived under this assumption because of the intractabil- 
ity of the computations involved. The rehashing 
transformation we used here is the only one derived in 
the case of affine transformations and it is based on the 
assumption that the distribution of model features is 
Gaussian over a convex domain. Obviously, the rehash- 
ing transformation does not perform satisfactorily, as is 
illustrated in Figure 6b. 
. .  

Figure 6. (a) The distribution of (affine) invariants for 
the set of different objects, (b) the rehashed distribution 
of invariants. 

Figures 3b and 3d show the distribution of hash 
entries over a 20 x 20 hash table, for the case of the ori- 
ginal invariants and the rehashed invariants correspond- 
ingly. A SOFMC-NN with the same architecture as in 
the previous experiment was utilized. The same network 
parameters were chosen as before except for the number 
of epochs which was chosen to be 100. The number of 
invariants used to train the SOFh4C-NN was 41,292, 
normalized in the interval [0, 11 x [0, 11. The feature 
map to which the network converged is shown in Figure 
4b. Figun 3f illustrates the distribution of hash entries 
over the elastic hash table and the second row of Table 
(1) shows the computed SD's (hash table occupancy) for 
all the approaches. 

53.  Experiment 3 
In this section, we report two recognition experi- 

ments. In the first experiment, the scene shown in Figure 
7a was considered. The recognition results are shown in 
Figure 7e. The first two rows of Table (2) present the 
number of hypotheses tried by each approach until both 
models were recognized correctly (60% or more of the 
model points were required to match with the scene). In 
the hypothesis verification step, a candidate match was 
verified if the corresponding scene basis triplet had 
received at least one fourth of the maximum number of 
votes. Next, we considered the scene of Figure 7b. The 
recognition results are shown in Figure 7f and the 
number of hypotheses tried by each method is shown in 
the last three rows of Table (2). Overall, the proposed 
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approach verified about 35% - 50% less hypotheses than 
the hypotheses verified by geometric hashing without 
rehashing and 20% - 30% less hypotheses than the 
hypotheses verified by geometric hashing with rehash- 
ing. 

TABLE 2. Number of hypotheses tried during verification. 

Number of hypotheses 

69835 

204997 
144546 

Scene2(Model3) I 34295 I 26947 I 19784 

(4 
Figure 7. (a) and (b) two real scenes with overlapped 
models, (c)' and (d) 'the boundary contours with the 
interest points (curvature maxima and zero-crossings) 
marked, (e) and (f) the recognition results. 

6. Conclusions 

The advantages of the proposed approach are very 
important, given that the choice of a good hash function 
is problem dependent. The availability of a learning 
scheme which can find a geometric hash function with 
stable behavior, that is independent of the problem at 
hand, is particularly attractive. Furthermore, the 
independence of the proposed approach from any 
assumption suggests that the proposed approach is a 

very useful tool in helping us to derive approximate 
analytical rehashing functions in cases where a closed 
form solution cannot be found using traditional 
approaches. Also, extending the SOFMC-NN to handle 
3-D hash spaces is quite possible. One problem associ- 
ated with the proposed approach is that the training of 
the SOFMC-NN is rather time consuming. However, 
this is not a serious disadvantage since the SOFMC-NN 
can be parallelized. 
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